基于卷积神经网络的建筑物识别系统,resnet50,mobilenet模型【pytorch框架+python源码】

news/2025/2/27 6:27:15

更多目标检测、图像分类识别、目标检测与追踪等项目可看我主页其他文章

功能演示:

基于卷积神经网络的建筑物系统,resnet50,mobilenet【pytorch框架,python,tkinter】_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的建筑物识别系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。

该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由tkinter设计和实现。此项目可在windowns、linux(ubuntu, centos)、mac系统下运行。

该项目是在pycharm和anaconda搭建的虚拟环境执行,

pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_windows启动python虚拟环境-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

 vscode和anaconda安装和配置可观看教程:

保姆级的vscode+anaconda搭建python虚拟环境_vscode配置anaconda的python环境-CSDN博客

 

(二)项目介绍

1. 项目结构

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单

以训练resnet50模型为例:

第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数

​ 

第二步:模型训练和验证,即直接运行model_resnet50.py文件

第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果

2. 数据结构

​​​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:tkinter+python) 

​​​​

4.模型训练和验证的一些指标及效果
​​​​​1)模型训练和验证的准确率曲线,损失曲线

​​​​​2)热力图

​​3)准确率、精确率、召回率、F1值

4)模型训练和验证记录

​​

(三)代码

由于篇幅有限,只展示核心代码

python">    def main(self, epochs):
        # 记录训练过程
        log_file_name = './results/resnet50训练和验证过程.txt'
        # 记录正常的 print 信息
        sys.stdout = Logger(log_file_name)
 
        print("using {} device.".format(self.device))
        # 开始训练,记录开始时间
        begin_time = time()
        # 加载数据
        train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
        print("class_names: ", class_names)
        train_steps = len(train_loader)
        val_steps = len(validate_loader)
        # 加载模型
        model = self.model_load()  # 创建模型
        # 修改全连接层的输出维度
        in_channel = model.fc.in_features
        model.fc = nn.Linear(in_channel, len(class_names))
 
        # 模型结构可视化
        x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入
        # 模型结构保存路径
        model_visual_path = 'results/resnet50_visual.onnx'
        # 将 pytorch 模型以 onnx 格式导出并保存
        torch.onnx.export(model, x, model_visual_path)  
        # netron.start(model_visual_path)  # 浏览器会自动打开网络结构
 
 
        # 将模型放入GPU中
        model.to(self.device)
        # 定义损失函数
        loss_function = nn.CrossEntropyLoss()
        # 定义优化器
        params = [p for p in model.parameters() if p.requires_grad]
        optimizer = optim.Adam(params=params, lr=0.0001)
 
        train_loss_history, train_acc_history = [], []
        test_loss_history, test_acc_history = [], []
        best_acc = 0.0
 
        for epoch in range(0, epochs):
            # 下面是模型训练
            model.train()
            running_loss = 0.0
            train_acc = 0.0
            train_bar = tqdm(train_loader, file=sys.stdout)
            # 进来一个batch的数据,计算一次梯度,更新一次网络
            for step, data in enumerate(train_bar):
                # 获取图像及对应的真实标签
                images, labels = data
                # 清空过往梯度
                optimizer.zero_grad()
                # 得到预测的标签
                outputs = model(images.to(self.device))
                # 计算损失
                train_loss = loss_function(outputs, labels.to(self.device))
                # 反向传播,计算当前梯度
                train_loss.backward()
                # 根据梯度更新网络参数
                optimizer.step()  
 
                # 累加损失
                running_loss += train_loss.item()
                # 每行最大值的索引
                predict_y = torch.max(outputs, dim=1)[1]  
                # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
                # 更新进度条
                train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                         epochs,
                                                                         train_loss)
            # 下面是模型验证
            # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
            model.eval()
            # accumulate accurate number / epoch
            val_acc = 0.0  
            testing_loss = 0.0
            # 张量的计算过程中无需计算梯度
            with torch.no_grad():  
                val_bar = tqdm(validate_loader, file=sys.stdout)
                for val_data in val_bar:
                    # 获取图像及对应的真实标签
                    val_images, val_labels = val_data
                    # 得到预测的标签
                    outputs = model(val_images.to(self.device))
                    # 计算损失
                    val_loss = loss_function(outputs, val_labels.to(self.device))  
                    testing_loss += val_loss.item()
                    # 每行最大值的索引
                    predict_y = torch.max(outputs, dim=1)[1]  
                    # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                    val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()
 
            train_loss = running_loss / train_steps
            train_accurate = train_acc / train_num
            test_loss = testing_loss / val_steps
            val_accurate = val_acc / val_num
 
            train_loss_history.append(train_loss)
            train_acc_history.append(train_accurate)
            test_loss_history.append(test_loss)
            test_acc_history.append(val_accurate)
 
            print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
                  (epoch + 1, train_loss, val_accurate))
            # 保存最佳模型
            if val_accurate > best_acc:
                best_acc = val_accurate
                torch.save(model.state_dict(), self.model_name)
 
        # 记录结束时间
        end_time = time()
        run_time = end_time - begin_time
        print('该循环程序运行时间:', run_time, "s")
        # 绘制模型训练过程图
        self.show_loss_acc(train_loss_history, train_acc_history,
                           test_loss_history, test_acc_history)
        # 画热力图
        test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)
        # 计算混淆矩阵
        self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)

​​​​​(四)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

项目包含全部资料,一步到位,省心省力!

项目运行过程如出现问题,请及时交流!


http://www.niftyadmin.cn/n/5869646.html

相关文章

【网络】TCP vs UDP详解( 含python代码实现)

【网络】TCP vs UDP详解 1. 基本概念2. 主要特性对比3. 工作原理TCP 的工作原理UDP 的工作原理 4. 优缺点对比5. 适用场景6. 代码示例TCP 服务器TCP 客户端UDP 服务器UDP 客户端 7. 总结 TCP(传输控制协议)和 UDP(用户数据报协议)…

ALM研发管理:全新甘特图,让项目管理更高效

在软件开发领域,甘特图一直是项目管理的重要工具。通过可视化的任务时间线,清晰地展示项目的进度和关键时间节点,帮助团队成员快速理解项目状态,协调工作进度,从而有效提升项目管理的效率。无论是需求分析、设计、开发…

自然语言处理:初识自然语言处理

介绍 大家好,博主又来给大家分享知识了。从这次开始,博主给大家分享自然语言处理这个领域的内容。这也是博主非常感兴趣的研究领域。 最开始,博主计划在自然语言处理系列的第一篇博文中,和大家聊聊文本规范化这个话题。毕竟在自…

AI大模型-提示工程学习笔记20-多模态思维链提示

目录 1. 多模态思维链提示的核心思想 (1) 单模态 CoT 的局限性 (2) Multimodal CoT 的解决方案 2. Multimodal CoT 的工作流程 (1) 多模态输入 (2) 特征提取 (3) 多模态融合 (4) 思维链生成 (5) 答案生成 3. Multimodal CoT 的关键组件 (1) 大语言模型 (LLM) (2) 多…

【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter24-网络请求与远程资源

二十四、网络请求与远程资源 网络请求与远程资源 2005 年,Jesse James Garrett 撰写了一篇文章,“Ajax—A New Approach to Web Applications”。这篇文章中描绘了一个被他称作 Ajax(Asynchronous JavaScriptXML,即异步 JavaScrip…

计算机毕业设计SpringBoot+Vue.js汽车销售网站(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

如何最小化Spark中的Shuffle开销

在Spark中,Shuffle是指数据在不同节点之间重新分配的过程,这个过程通常会涉及大量的数据传输和磁盘读写,消耗大量的计算和网络资源,因此是Spark作业中的一个性能瓶颈。为了最小化Spark中的Shuffle开销,可以采取以下策略…

信息系统的安全防护

文章目录 引言**1. 物理安全****2. 网络安全****3. 数据安全****4. 身份认证与访问控制****5. 应用安全****6. 日志与监控****7. 人员与管理制度****8. 其他安全措施****9. 安全防护框架**引言 从技术、管理和人员三个方面综合考虑,构建多层次、多维度的安全防护体系。 信息…